Deciding active structural completeness

Michał Stronkowski

Warsaw University of Technology

LATD Bern, August 2018

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

(active) structural completeness

 \vdash_r - the least consequence relation containing the rule r and extending a cr \vdash

r is <u>admissible for</u> \vdash if Theorems(\vdash) = Theorems(\vdash *_r*)

 $r = \Gamma / \varphi$ is <u>active</u> for \vdash if there is a substitusion σ such that $\sigma(\Gamma) \subseteq \text{Theorems}(\vdash)$

 \vdash is (actively) structurally complete if every (active) admissible rule is derivable, i.e., is in \vdash

Fact

 Γ / φ is admissible for \vdash iff $(\forall \gamma \in \Gamma, \vdash \sigma(\gamma))$ yields $\vdash \sigma(\varphi)$ for every substitution σ

(quasi)varieties

<u>identities</u> look like $(\forall \bar{x}) s(\bar{x}) \approx t(\bar{x})$ <u>quasi-identities</u> look like

 $(\forall \bar{x}) \ s_1(\bar{x}) \approx t_1(\bar{x}) \land \cdots \land s_n(\bar{x}) \approx t_n(\bar{x}) \rightarrow \ s(\bar{x}) \approx t(\bar{x})$

(quasi)varieties = classes of algebras defined by (quasi-)identities

Mal'cev

A class is SPP_U-closed iff it is a quasivariety.

Birkhoff

A class is HSP-closed iff it is a variety.

correspondence

cr ⊢	\longleftrightarrow
logical connectives	\longleftrightarrow
theorems	\longleftrightarrow
$Theorems(\vdash)$	\longleftrightarrow
derived rules	\longleftrightarrow
admissible rules	\longleftrightarrow
active rules	\longleftrightarrow

quasivariety ${\cal Q}$
basic operations
identities valid in ${\cal Q}$
free algebra F
quasi-identities valid in ${\cal Q}$
quasi-identities valid in ${f F}$
quasi-identities with
the premise satisfiable in ${\bf F}$

Thus we study admissibility and (A)SC for (quasi)varieties.

SC and AS, a comparition

Examples

- ▶ S5 and L_n are ASC but not SC ($n \ge 3$) [folklore];
- discriminator varieties are ASC [Burris '92, Dzik '11], and are SC iff they are minimal or trivial (if there are two distinct constants) [Campercholi, S., Vaggione '16];
- ASC normal extensions of S4 are SC iff they extend S4.McKinsey [Dzik and S. '16];
- among 3330 3-element groupoids (up to izo.) 2676 generate SC quasivarieties and 2930 generate ASC quasivarieties [Metcalfe and Röthlisberger '13];
- ▶ almost all finite algebras generate SC varieties [Murskii '75].
- among 97 224 120 normal modal logics given by frames up to 6 elements there are 5 066 204 SC and 73 664 964 ASC (and 14 uncounted) [S. and Uliński unpublished];

decidability

(A)SC-problem for quasivarieties INPUT: a finite set of finite algebras \mathcal{K} , OUTPUT: YES if SP(\mathcal{K}) is (A)SC, NO otherwise.

Th. (Dywan '78, Bergman '88, Metcalfe & Röthlisberger '13) There is an algorithm which solves the (A)SC-problem for quasivarieties.

Dywan reduced the number of quasi-identities to be checked.

others studied (relatively) subdirectly irreducible algebras

decidability

(A)SC-problem for quasivarieties INPUT: a finite set of finite algebras \mathcal{K} , OUTPUT: YES if SP(\mathcal{K}) is (A)SC, NO otherwise.

Th. (Dywan '78, Bergman '88, Metcalfe & Röthlisberger '13) There is an algorithm which solves the (A)SC-problem for quasivarieties.

- Dywan reduced the number of quasi-identities to be checked.
- others studied (relatively) subdirectly irreducible algebras

(A)SC-problem for varieties

INPUT: a finite algebra \mathbf{A} , OUTPUT: YES if HSP(\mathbf{A}) is (A)SC, NO otherwise. Question How about the (A)SC-problem for varieties?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SI algebras

An algebra **A** is subdirectly irreducible if there is a pair $a, b \in A$ of distinct elements such that every nontrivial congruence of **A** contains (a, b).

Fact

An algebra **A** is SI if and only if whenever $\mathbf{A} \leq \prod \mathbf{A}_i$, then one of the projections $\pi_i : \mathbf{A} \to \mathbf{A}_i$ is an embeding.

A quasivariety Q is finitely generated if there exists a finite family \mathcal{F} of finite algebras such that $Q = SP(\mathcal{F})$.

SI algebras

An algebra **A** is subdirectly irreducible if there is a pair $a, b \in A$ of distinct elements such that every nontrivial congruence of **A** contains (a, b).

Fact

An algebra **A** is SI if and only if whenever $\mathbf{A} \leq \prod \mathbf{A}_i$, then one of the projections $\pi_i : \mathbf{A} \to \mathbf{A}_i$ is an embeding.

A quasivariety Q is finitely generated if there exists a finite family \mathcal{F} of finite algebras such that $Q = SP(\mathcal{F})$.

Theorem (Birkhoff '35)

Every variety ${\mathcal V}$ is generated as a quasivariety by its SI algebras:

 $\mathcal{V} = \mathsf{SP}(\mathsf{SI} \text{ algebras from } \mathcal{V}).$

Consequently, there is a finite bound on the size of SI algebras in ${\cal V}$ if and only if ${\cal V}$ is finitely generated as a quasivariety.

Question

How about the (A)SC-problem for varieties?

Question

How about the (A)SC-problem for varieties?

Proposition

There is an algorithm which solves the (A)SC-problem restricted to congruence distributive varieties.

Proof.

By Jónsson's lemma, a finitely generated congruence distributive variety is finitely generated as a quasivariety. All SI algebras from $HSP(\mathbf{A})$ are in $HS(\mathbf{A})$.

Application

All varieties with lattice terms are congruence distributive.

Theorem (Bergman '88)

Let **A** be a finite algebra. If HSP(A) is SC, then every SI algebra from HSP(A) embeds into **A**. Consequently, a finitely generated SC variety is finitely generated

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

as a quasivariety.

SI algebras in ASC varieties - the new result!

Theorem

Let ${\bf A}$ be a finite algebra. If HSP(${\bf A})$ is ASC, then every SI algebra from HSP(${\bf A})$ has cardinality bounded by

 $|A|^{(|A|+1)\cdot|A|^{2\cdot|A|}}$

Consequently, a finitely generated SC variety is finitely generated as a quasivariety.

Proof.

By studying relatively SI algebras in the quasivariety generated by free algebras.

The residual problem

Theorem (McKenzie '96)

There is no algorithm which takes as an input a finite algebra \mathbf{A} and decides whether the cardinalities of SI algebras in HSP(\mathbf{A}) are bounded by a finite number.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

The residual problem

Theorem (McKenzie '96)

There is no algorithm which takes as an input a finite algebra \mathbf{A} and decides whether the cardinalities of SI algebras in HSP(\mathbf{A}) are bounded by a finite number.

The residual problem

INPUT: a finite algebra **A** and a natural number m, OUTPUT: YES if all SI algebras from HSP(**A**) have cardinality $\leq m$, NO otherwise.

We do not know whether there exists an algorithm solving the residual problem!

Application

Fact

Let \mathcal{A} be a set of finite algebras. Assume that there is an algorithm solving the residual problem restricted to the case when the input algebras are from \mathcal{A} . Then there is an algorithm solving the (A)SC problem for varieties restricted to algebras from \mathcal{A} .

Proof.

Take $m = |A|^{(|A|+1) \cdot |A|^{2 \cdot |A|}}$.

Application

Theorem

There are algorithms solving the residual problem for the following classes of algebras:

- finite semigroups [Golubov and Sapir '82, McKenzie '83, Kublanovskii '83];
- ▶ finite algebras generating congruence modular varieties [Freese and McKenzie '81] includes varieties with Mal'cev's term (groups, modules) M(x, y, y) = M(y, y, x) = x;
- finite algebras generating congruence meet-semidistributive varieties [Willard '00] includes varieties with a semilattice term.

Consequently, there are algorithms solving the (A)SC problem for varieties when restricted to one of the above classes of algebras.

The end

This is all

Thank you!

